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Abstract
Based on a revised version of inverse scattering transform for the derivative
nonlinear Schrödinger (DNLS) equation with vanishing boundary condition
(VBC), the explicit N -soliton solution has been derived by some algebra
techniques of some special matrices and determinants, especially the Binet–
Cauchy formula. The one- and two-soliton solutions have been given as the
illustration of the general formula of the N -soliton solution. Moreover, the
asymptotic behaviors of the N -soliton solution have been discussed.

PACS numbers: 05.45.Yv, 42.81.Dp, 52.35.Sb

1. Introduction

As is well known, the derivative nonlinear Schrödinger (DNLS) equation is one of the rare
several integrable nonlinear models that permit soliton solutions. It has been found that
many physical phenomena, such as Alfvén waves in space plasma [1–8], sub-picosecond or
femtosecond pulses in single-mode optical fibers [9–13], the weak nonlinear electromagnetic
waves in (anti-)ferromagnetic or dielectric systems [14–16] under external magnetic fields,
can all be described with the DNLS equation. Research of the DNLS equation has
not only mathematic interest and significance, but also an important physical application
background. The DNLS equation with different boundary conditions—the vanishing boundary
condition (VBC) and the nonvanishing boundary condition (NVBC)—has been studied for a
long time.

For the NVBC case, many heuristic and useful results have been attained [17–20].
Recently, by appropriately introducing an affine parameter in the Zakharov–Shabat (ZS)
integral kern [21], Chen [19] and others have found its N -soliton solution for a special case
that all the simple poles (zeros of a(λ)) locate on a circle of radius ρ centered at the origin.
Lashkin [20] has found his multi-soliton solution for some extended case with N poles on a
circle and M poles out of the circle. He has further developed its perturbation theory based
on inverse scattering transform (IST).
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For the VBC case, which is the only concerned theme of the present paper, some attempts
and progresses have been made to solve the DNLS equation. Since Kaup and Newell [22]
proposed an IST with a revision in their pioneer works, one-soliton solution was firstly attained
and several versions of raw or explicit multi-soliton solutions were also obtained by means of
different approaches [18, 23, 24]. Huang and Chen have obtained an N -soliton solution by
means of Daboux transformation [24]. Steudel [18] has derived a formula for the N -soliton
solution in terms of Vandermonde-like determinants by means of Bäcklund transformation
[18]; but as [19] points out, his multi-soliton solution is difficult to demonstrate collisions
among solitons and still has a too complex form to be used in the soliton perturbation theory
of DNLSE, although it can easily generate compute pictures.

Since the integral kern in the Zakharov–Shabat (ZS) equation does not tend to zero in
the limit of spectral parameter λ with |λ| → ∞, the contribution of the path integral along
the big circle (the out contour) is also nonvanishing; the usual procedure to perform inverse
scattering transform encounters difficulty and is obsolete. Kaup thus proposed a revised IST
by multiplying an additional weighing factor before the Jost solution E(x, λ) so that it tends
to zero as |λ| → ∞; thus, the modified ZS kern should lead to a vanishing contribution of
the integral along the big circle of the Cauchy contour. Though the one-soliton solution has
been found by the obtained ZS equation of their IST, it is very difficult to derive directly
its multi-soliton solution by their IST due to the existence of a complication phase factor
which is related to the solution itself [22]. We thus consider proposing a new revised IST to
avoid the excessive complexity. Our N -soliton solution obviously has a standard multi-soliton
form. It can easily be used to discuss its asymptotic behaviors and then develop its direct
perturbation theory. On the other hand, in solving the ZS equation for DNLS with VBC, we
will unavoidably encounter a problem of calculating determinant det(I + Q1Q2), for two N
× N matrices Q1 and Q2, where I is an N × N identity matrix. Our paper also shows that
the Binet–Cauchy formula and some other linear algebra techniques (appendices A.1–4) play
important roles in the whole course, and are actually also effective for some other nonlinear
integrable models [25].

This paper is organized as follows. In section 2, we review the general theory of IST for
the DNLS equation with VBC, give the newly revised IST and the ZS equation by introducing
a suitable factor λ−2 or λ−1 in the usual ZS integral kern. In section 3, the new ZS equation
is solved and the raw expression of theN -soliton solution is expressed in a standard form. In
section 4, the verification of the standard form for the N -soliton solution is provided. The
explicit and unified N -soliton solution to the DNLS equation with VBC in the reflectionless
case has been derived. In section 5, one- and two-soliton solutions have been given as two
illustrations of the general formula for the N -soliton solution and the general computation
procedures. In section 6, we have discussed in detail the asymptotic behaviors of our N -soliton
solution. In section 7, we transform the N -soliton solution of the DNLS equation into that of the
MNLS equation by gauge-like transformation. Some concluding remarks have been made in
section 8. In the end, we have enumerated the needed algebra techniques in the appendices.

2. The revised inverse scattering transform and the Zakharov–Shabat equation
for the DNLS equation with VBC

2.1. The fundamental concepts for the IST theory of the DNLS equation

The DNLS equation is usually expressed as

iut + uxx + i(|u|2u)x = 0 (1)
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with vanishing boundary condition, where the subscripts stand for partial derivative. Its Lax
pair is given by

L = −iλ2σ3 + λU, U =
(

0 u

−ū 0

)
(2)

and

M = −i2λ4σ3 + 2λ3U − iλ2U 2σ3 − λ(−U 3 + iUxσ3) (3)

where λ is a spectral parameter, and σ3 is the third one of Pauli matrices σ1,σ2,σ3, and a letter
with a bar (e.g. ū in (2)) represents complex conjugate. The first Lax equation is

∂xf (x, λ) = L(x, λ)f (x, λ). (4)

In the limit of |x| → ∞, u → 0, and

L → L0 = −iλ2σ3 M → M0 = −i2λ4σ3. (5)

The free Jost solution is a 2 × 2 matrix

E(x, λ) = e−iλ2xσ3 , E1(x, λ) =
(

1
0

)
e−iλ2x E2(x, λ) =

(
0
1

)
eiλ2x. (6)

The Jost solutions of (4) are defined by their asymptotic behaviors as x → ±∞,

�(x, λ) = (ψ̃(x, λ), ψ(x, λ)) → E(x, λ), as x → ∞ (7)

�(x, λ) = (φ(x, λ), φ̃(x, λ)) → E(x, λ), as x → −∞ (8)

where ψ(x, λ) = (ψ1(x, λ), ψ2(x, λ))T , ψ̃(x, λ) = (ψ̃1(x, λ), ψ̃2(x, λ))T , etc, and
superscript ‘T’ represents transposing of a matrix here and afterward.

Since the first Lax equation of DNLS is similar to that of NLS, there are some similar
properties of the Jost solutions. The monodromy matrix T (λ) is defined as

�(x,λ) = �(x, λ)T (λ) (9)

where

T (λ) =
(

a(t, λ) −b̃(t, λ)

b(t, λ) ã(t, λ)

)
. (10)

It is easy to find from (2) and (9) that

σ2 L(λ̄) σ2 = L(λ), σ2 T (λ̄) σ2 = T (λ) (11)

σ2 �(x, λ) σ2 = �(x, λ), σ2 �(x, λ̄) σ2 = �(x, λ) (12)

and

σ3�(x, λ)σ3 = �(x,−λ), σ3�(x, λ)σ3 = �(x,−λ) (13)

σ3L(λ)σ3 = L(−λ), σ3T (λ)σ3 = T (−λ). (14)

Then we can get following reduction relation and symmetry properties:

iσ2ψ(x, λ̄) = ψ̃(x, λ) (15)

−iσ2φ̄(x, λ̄) = φ̃(x, λ) (16)

ã(λ̄) = a(λ), b̃(λ̄) = b(λ) (17)

and

ψ(x,−λ) = −σ3ψ(x, λ) (18)

ψ̃(x,−λ) = σ3ψ̃(x, λ) (19)

a(−λ) = a(λ), b(−λ) = −b(λ)

ã(−λ) = ã(λ), b̃(−λ) = −b̃(λ).
(20)
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2.2. Relation between the Jost functions and solutions to the DNLS equation

The asymptotic behaviors of the Jost solutions in the limit of |λ| → ∞ can be obtained by
simple derivation. Let υ = (υ1, υ2)

T ≡ ψ̃(x, λ), and equation (4) can be rewritten as

υ1x + iλ2υ1 = λuυ2, υ2x − iλ2υ2 = −λūυ1. (21)

Then we have

υ1xx − ux

u
(υ1x + iλ2υ1) + λ4υ1 + λ2|u|2υ1 = 0. (22)

In the limit |λ| → ∞, we assume

ψ̃1(x, λ) = e−iλ2x+g.

Substituting it into equation (22), we have

(−iλ2 + gx)
2 + gxx − ux

u
gx + λ4 + λ2|u|2 = 0. (23)

In the limit |λ| → ∞, gx can be expanded as series of (λ−2)j , j = 1, 2, . . .

igx ≡ µ = µ0 + µ2(2λ2)−1 + · · · (24)

and

µ0 = 1
2 |u|2, µ2 = −i 1

2 ūxu − 1
4 |u|4, . . . . (25)

Equation (21) leads to gxυ1 = λuυ2. Considering (25), in the limit of |λ| → ∞, we find a
useful formula

ū = i2 lim
|λ|→∞

λψ̃2(x, λ)

ψ̃1(x, λ)
(26)

which expresses the solution u in terms of the Jost solutions as |λ| → ∞.
On the other hand, the zeros of a(λ) appear in pairs, and can be designed by λn,

n = 1, 2, . . . , N in the I quadrant, and λn+N = −λn in the III quadrant. The discrete
part of a(λ) is [26, 27]

a(λ) =
N∏

n=1

λ2 − λ2
n

λ2 − λ2
n

λ2
n

λ2
n

(27)

where a(0) = 1. It comes from our consideration of the fact that, from the sum of two Cauchy
integrals

ln a(λ)

λ
+ 0 = 1

2π i

∫
�

dλ′ ln a(λ′)ã(λ′)
λ′(λ′ − λ)

, � = (0,∞) ∪ (i∞, i0) ∪ (0,−∞) ∪ (−i∞, i0),

in order to maintain that

ln a(λ) → 0, as λ → 0, and ln a(λ) is finite as |λ| → ∞,

we then have to introduce a factor λ2
n

/
λ2

n in (27).
At the zeros of a(λ), we have

φ(x, λn) = bnψ(x, λn), ȧ(−λn) = −ȧ(λn), bn+N = −bn. (28)

As µ0 �= 0, the Jost solutions do not tend to the free Jost solutions E(x, λ) in the limit of
|λ| → ∞. This is their most typical property, which means that the usual procedure of
constructing the equation of IST by a Cauchy contour integral must be invalid; thus, a newly
revised procedure to derive a suitable IST and the corresponding ZS equation is proposed in
our group.
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Figure 1. The integral path for IST of the DNLS.

2.3. The revised IST and Zakharov–Shabat equation for DNLSE with VBC

The 2 × 1 column function �(x, λ) can be introduced as usual

�(x, λ) =
⎧⎨
⎩

1

a(λ)
φ(x, λ), as λ in I, III quadrants

ψ̃(x, λ), as λ in II, IV quadrants.
(29)

An alternative form of the IST equation is proposed as
1

λ2
{�1(x, λ) − E11(x, λ)} eiλ2x = 1

2π i

∫
�

dλ′ 1

λ′ − λ

1

λ′2 {�1(x, λ′) − E11(x, λ′)} eiλ′2x. (30)

Because in the limit of |λ| → ∞

lim
|λ|→∞

eiλ2x = 0, as

{
x > 0, Im λ2 > 0, (λ in the I, III quadrants),

x < 0, Im λ2 < 0, (λ in the II, IV quadrants),

so the integral path � should be selected as shown in figure 1, where the radius of big circle
tends to infinite, while the radius of small circle tends to zero. The factor λ−2 is introduced
to ensure that the contribution of the integral along the big arc is vanishing. Meanwhile, our
modification produces no new poles since the Lax operator L → 0, as λ → 0.

In the reflectionless case, the revised IST equation gives

ψ̃1(x, λ) = e−iλ2x +
2N∑
n=1

1

λ2
n

λ2

λ − λn

bn

ȧ(λn)
ψ1(x, λn) eiλ2

nx e−iλ2x (31)

where ȧ(λn) = d
dλ

a(λ)
∣∣
λ=λn

. Similarly, an alternative form of IST equation is proposed as

1

λ
{�2(x, λ)} eiλ2x = 1

2π i

∫
�

dλ′ 1

λ′ − λ

1

λ′ {�2(x, λ′)} eiλ′2x (32)

where a factor λ−1 is introduced for the same reason as λ−2 in equation (30). Then in the
reflectionless case, we can attain

ψ̃2(x, λ) =
2N∑
n=1

1

λn

λ

λ − λn

bn

ȧ(λn)
ψ2(x, λn) eiλ2

nx e−iλ2x. (33)
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Taking the symmetry and reduction relation (18) and (28) into consideration, from (31) and
(33) we can obtain the revised Zakharov–Shabat equation for the DNLS equation with VBC,
that is

ψ̃1(x, λ) = e−iλ2x +
N∑

n=1

2λ2

λn

(
λ2 − λ2

n

) bn

ȧ(λn)
ψ1(x1, λn) eiλ2

nx e−iλ2x (34)

ψ̃2(x, λ) =
N∑

n=1

2λ

λ2 − λ2
n

bn

ȧ(λn)
ψ2(xs, λn) eiλ2

nx e−iλ2x. (35)

3. The raw expression of the N-soliton solution

Substituting equations (34) and (35) into formula (26), we thus attain the N -soliton solution

ūN = −i2
UN

VN

(36)

where

UN =
N∑

n=1

2bn

ȧ(λn)
ψ2(x, λn) eiλ2

nx

(37)

VN = 1 +
N∑

n=1

2bn

λnȧ(λn)
ψ1(x, λn) eiλ2

nx .

Let λ = λ̄m, m = 1, 2, . . . , N , respectively, in equations (34) and (35), and making use of the
symmetry and reduction relation (15), we can attain

ψ2(x, λm) = e−iλ2
mx +

N∑
n=1

2λ2
m

λn

(
λ2

m − λ2
n

) cnψ1(x, λn) eiλ2
nx e−iλ2

mx (38)

ψ1(x, λm) = −
N∑

n=1

2λ2
m

λ2
m − λ2

n

cnψ2(x, λn) eiλ2
nx e−iλ2

mx m = 1, 2, . . . , N, (39)

where cn = bn/ȧ(λn). We also define

fn =
√

2cn eiλ2
nx, (wj )n =

√
2cnψj (λn) j = 1, 2, and n = 1, 2, . . . , N.

(40)

(B1)mn = fm

λ2
m(

λ2
m − λ2

n

)
λn

fn, (B2)mn = f̄ m

λm

λ
2
m − λ2

n

fn, m, n = 1, 2, . . . , N

(41)

W1 = ((w1)1, (w1)2, . . . , (w1)N)T , W2 = ((w2)1, (w2)2, . . . , (w2)N)T

(42)

F = (f1, f2, . . . , fN)T , G =
(

f1

λ1
,
f2

λ2
, . . . ,

fN

λN

)T

where superscript ‘T’ represents transposition of a matrix.
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Then equations (38) and (39) can be rewritten as

(w2)m = f̄ m +
N∑

n=1

(B1)mn(w1)n (43)

(w1)m = −
N∑

n=1

(B2)mn(w2)n (44)

where m = 1, 2, . . . , N . They can be rewritten in a more compact matrix form:

W 2 = F̄ + B1 • W1 (43a)

W 1 = −B2 • W2. (44b)

Then

W2 = (I + B̄1B2)
−1F (45)

W1 = −B̄2(I + B1B̄2)
−1F̄ (46)

where I is the N × N identity matrix. On the other hand, from (37) we know

UN =
N∑

n=1

fnw2n = FT W2 (47)

VN = 1 +
N∑

n=1

fn

λn

w1n = 1 + GT W1. (48)

Substituting equations (45) and (46) into (47) and (48) and then substituting (47) and (48) into
formula (36), we obtain

ūN = −i2
FT W2

1 + GT W1
= −i2

FT (I + B̄1B2)
−1F

1 − GT B̄2(I + B1B̄2)−1F̄

= −i2
det(I + B̄1B2 + FFT ) − det(I + B̄1B2)

det[I + (B1 − F̄GT )B̄2]
× det(I + B1B̄2)

det(I + B̄1B2)
≡ −2i

AD

D̄2
(49)

where

A ≡ det(I + B̄1B2 + FFT ) − det(I + B̄1B2) (50)

D ≡ det(I + B1B̄2). (51)

In the subsequent section, we will prove that

det[I + (B1 − F̄GT )B̄2] = det(I + B̄1B2) ≡ D̄. (52)

It is obvious that formula (49) has the usual standard form of a soliton solution.
Here in formula (49), some algebra techniques have been used and can be found in

equation (A.1)
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4. The explicit expression of the N-soliton solution

4.1. Verification of standard form for the N-soliton solution

We only need to prove that equation (52) holds.
Firstly, we define N × N matrices P1, P2, Q1, Q2 respectively as

(P1)nm ≡ (B1 − F̄GT )nm = f̄ n

λm

λ2
n − λ2

m

fm

(53)
(P2)mn ≡ (B̄2)mn = fm

λm

λ2
m − λ2

n

f̄ n

(Q1)nm ≡ (B̄1)nm = fn

λ2
n

λ2
n − λ2

m

(
f̄ m

λ̄m

)
(54)

(Q2)mn ≡ (B2)mn = f̄ m

λ̄m

λ2
m − λ2

n

fn.

Then

D̄ = det(I + Q1Q2)

= 1 +
N∑

r=1

∑
1�n1<n2<···<nr�N

D̄r(n1, n2, . . . , nr)

= 1 +
N∑

r=1

∑
1�n1<···<nr�N

∑
1�m1<···<mr�N

Q1(n1, n2, . . . , nr ;m1,m2, . . . , mr)

× Q2(m1,m2, . . . , mr ; n1, n2, . . . , nr) (55)

where Q1(n1, n2, . . . , nr ;m1,m2, . . . , mr) denotes a minor, which is the determinant of a
submatrix of Q1 consisting of elements belonging not only to rows (n1, n2, . . . , nr) but also
columns (m1,m2, . . . , mr). Here the Binet–Cauchy formula is used in equations (A.2)–(A.4).
Then

Q1(n1, n2, . . . , nr ;m1,m2, . . . , mr)Q2(m1,m2, . . . , mr; n1, n2, . . . , nr)

=
∏
n,m

fnf̄ m

λ2
n − λ

2
m

λ2
n

λ̄m

∏
n<n′,m<m′

(
λ2

n − λ2
n′
)(

λ2
m′ − λ2

m

) •
∏
m,n

f̄ mfn

λ
2
m − λ2

n

λm

×
∏

n<n′,m<m′

(
λ̄2

m − λ2
m′

) (
λ2

n′ − λ2
n

)

= (−1)r
∏
m,n

λ2
nf

2
n f 2

m(
λ2

n − λ2
m

)2

∏
n<n′,m<m′

(
λ2

n − λ2
n′
)2 (

λ2
m − λ2

m′
)2

(56)

where

n, n′ ∈ {n1, n2, . . . , nr}, m,m′ ∈ {m1,m2, . . . , mr}. (57)

Similarly,

P1(n1, n2, . . . , nr ;m1,m2, . . . , mr)P2(m1,m2, . . . , mr ; n1, n2, . . . , nr)

= (−1)r
∏
n,m

f̄ 2
nf

2
mλ2

m(
λ̄2

n − λ2
m

) ∏
n<n′,m<m′

(
λ2

m − λ2
m′

)2 (
λ2

n − λ2
n′
)2

(58)
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where

n, n′ ∈ {n1, n2, . . . , nr}, m,m′ ∈ {m1,m2, . . . , mr} (57a)

and

det[I + (B1 − F̄GT )B̄2] = det(I + P1P2)

= 1 +
N∑

r=1

∑
1�n1<···<nr�N

∑
1�m1<···<mr�N

P1(n1, . . . , nr ;m1, . . . , mr)

× P2(m1, . . . , mr; n1, . . . , nr). (59)

It is easy to find a kind of permutation symmetry existing between expressions (56) and (58),
that is

P1(n1, . . . , nr ;m1, . . . , mr)P2(m1, . . . , mr; n1, . . . , nr)

= Q1(m1, . . . , mr ; n1, . . . , nr)Q2(n1, . . . , nr ;m1, . . . , mr). (60)

Comparing (55) with (59) and making use of (60), we complete our demonstration that
equation (52) holds. Thus the soliton solution is surely of the standard form as usual and can
be expressed as formula (49).

4.2. Introduction of time evolution function

The time evolution factor of the scattering data can be introduced by standard procedure [25].
Due to the fact that the second Lax operator M → −i2λ4σ3 in the limit |x| → ∞, it is easy
to derive the time dependence of scattering date

d

dt
λn = 0,

d

dt
a(λn) = 0

(61)
cn(t) = cn0 ei4λ4

nt , cn0 = bn0

ȧ(λn)
, bn(t) = bn0 ei4λ4

nt .

Then the typical soliton arguments θn and ϕn can be defined according to

f 2
n = 2cn0 ei2λ2

nxei4λ4
nt ≡ 2cn0 e−θn eiϕn (62)

where

θn = 4µnνn

[
x + 4

(
µ2

n − ν2
n

)
t
] = 4κn(x − Vnt)

ϕn = 2
(
µ2

n − ν2
n

)
x +

[
4
(
µ2

n − ν2
n

)2 − 16µ2
nν

2
n

] • t (63)

λ ≡ µn + iνn, Vn = −4
(
µ2

n − ν2
n

)
, κn = 4µnνn.

4.3. Calculation of determinant of D̄ and A

Substituting expressions (61) and (62) into formula (56) and then into (55), we have

Q1(n1, n2, . . . , nr ;m1,m2, . . . , mr)Q2(m1,m2, . . . , mr; n1, n2, . . . , nr)

= (−1)r
∏
n,m

(2cn)(2c̄m) e−θn eiϕn e−θm e−iϕm
λ2

n(
λ2

n − λ2
m

)2

×
∏

n<n′,m<m′

(
λ2

n − λ2
n′
)2(

λ2
m − λ2

m′
)2

(64)

with n, n′ ∈ {n1, n2, . . . , nr}, and m,m′ ∈ {m1,m2, . . . , mr}.
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Where the Binet–Cauchy formula is applied, which is numerated in equations (A.3) and
(A.4). Substituting expression (64) into formula (55) completes the calculation of determinant
D̄.

In the calculation of the most complicated determinant A in (49), we introduce an N ×
(N + 1) matrix �1 and an (N + 1) × N matrix �2 defined as

(�1)nm = (B̄1)nm = (Q1)nm, (�1)n0 = fn
(65)

(�2)mn = (B2)mn = (Q2)mn, (�2)0n = fn

with n,m = 1, 2, . . . , N .
We thus have

det(I + B̄1B2 + FFT ) = det(I + �1�2)

= 1 +
N∑

r=1

∑
1�n1<···<nr�N

∑
0�m1<···<mr�N

�1(n1, n2, . . . , nr ;m1,m2, . . . , mr)

×�2(m1,m2, . . . , mr; n1, n2, . . . , nr). (66)

The above summation obviously can be decomposed into two parts: one is extended to m1 =
0, the other extended to m1 � 1. Subtracted from (66), the part that is extended to m1 � 1, the
remaining part of (66) is exactly A in (49) (with m1 = 0 and m2 � 1). Due to (65), we have

A = det(I + �1�2) − det(I + Q1Q2)

=
N∑

r=1

∑
1�n1<···<nr�N

∑
1�m2<···<mr�N

Ar(n1, n2, . . . , nr ; 0,m2, . . . , mr)

=
N∑

r=1

N∑
1�n1<n2<nr�N

∑
1�m2<m3<···<mr�N

�1(n1, n2, . . . , nr ; 0,m2, . . . , mr)

× �2(0,m2, . . . , mr ; n1, n2, . . . , nr)

with

�1(n1, n2, . . . , nr ; 0,m2, . . . , mr)�2(0,m2, . . . , mr; n1, n2, . . . , nr)

= (−1)r−1
∏
n,m

f 2
n f 2

mλ2
m(

λ2
n − λ2

m

)2

∏
n<n′,m<m′

(
λ2

n − λ2
n′
)2(

λ2
m − λ2

m′
)2

= (−1)r−1
∏
n,m

(2cn)(2cm) e−θn eiϕn e−θm e−iϕm
λ2

m(
λ2

n − λ2
m

)2

×
∏

n<n′,m<m′

(
λ2

n − λ2
n′
)2(

λ2
m − λ2

m′
)2

(67)

where n, n′ ∈ {n1, n2, . . . , nr} and especially m,m′ ∈ {m2, . . . , mr}, which completes the
calculation of determinant A in formula (49).

Substituting the explicit expressions of D, D̄ and A into (49), we finally attain the explicit
expression of the N -soliton solution to the DNLS equation in VBC and the reflectionless case,
based upon a newly revised IST technique.

5. The typical examples for one- and two-soliton solutions

We give two concrete examples—the one- and two-soliton solutions as illustrations of the
general explicit soliton solution.
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In the case of one-soliton solution, N = 1, λ2 = −λ1, λ1 = ρ1 eiβ1 = µ1 + iν1 and

A1 = �1(n1 = 1;m1 = 0)�2(m1 = 0; n1 = 1) = f 2
1 (68)

D̄1 = Q1(n1 = 1;m1 = 1)Q2(m1 = 1; n2 = 1) = 1 − |f1|4λ2
1

/(
λ2

1 − λ2
1

)2
(69)

f 2
1 = 2c10 ei2λ2x ei4λ4

1t b10 ei2λ2x ei4λ4
1t ≡ e−θ1 eiϕ1

c10 = b10λ1
(
λ2

1 − λ2
1

)
2λ2

1

, b10 = e4µ1ν1x10 eiα10 .

It is different slightly from the definition in (63) for that here b10 has been absorbed into the
soliton center and initial phase.

θ1 = 4µ1ν1
[
x − x10 + 4

(
µ2

1 − ν2
1

)
t
]

(70)
ϕ1 = 2

(
µ2

1 − ν2
1

)
x +

[
4
(
µ2

1 − ν2
1

)2 − 16µ1ν
2
1

]
t + α10

then

A1 = λ1
(
λ2

1 − λ2
1

)
λ2

1

e−θ1 eiϕ1 = i2ρ1 sin 2β1 ei3β1 e−θ1 eiϕ1

D̄1 = 1 −
∣∣λ2

1 − λ2
1

∣∣2

|λ1|2
λ2

1(
λ2

1 − λ2
1

)2
e−2θ1 = 1 + ei2β1 e−2θ1

and

ū1(x, t) = −i2 · A1D1

D̄2
1

= 4ρ1 sin 2β1 ei3β1(1 + e−i2β1 e−2θ1)

(1 + ei2β1 e−2θ1)2
· e−θ1 eiϕ1 . (71)

The complex conjugate of the one-soliton solution ū in (71) is only in conformity with that
obtained from pure Marchenko formalism [26], up to a permitted global constant phase factor.

In the case of the two-soliton solution, N = 2, λ3 = −λ1, λ4 = −λ2.

λ1 = ρ1 eiβ1 = µ1 + iν1, λ2 = ρ2 eiβ2 = µ2 + iν2, (72)

c10 = b10

ȧ(λ1)
= b10

ζ 2
1 − ζ 2

1

2ζ1
· ζ 2

1 − ζ 2
2

ζ 2
1 − ζ 2

2

· ζ 2
1

ζ 2
1

· ζ 2
2

ζ 2
2 (73)

c20 = b20

ȧ(λ2)
= b20

ζ 2
2 − ζ2

2ζ2
· ζ 2

2 − ζ 2
1

ζ 2
2 − ζ 2

1

· ζ 2
1

ζ 2
1

· ζ 2
2

ζ 2
2

f 2
j = 2cj0 ei2λ2

j x ei4λ4
j t j = 1, 2 (cf (62))

(74)
bj0 ei2λ2

j x+i4λ4
j t ≡ e−θj eiϕj , j = 1, 2

where

θj = 4µjνj

[
x − xj0 + 4

(
µ2

j − ν2
j

)
t
]

(75)
ϕj = 2

(
µ2

j − ν2
j

)
x +

[
4
(
µ2

j − ν2
j

)2 − 16µ2
j ν

2
j

] · t + αj0

and bj0 is absorbed into the soliton center and the initial phase by

bj0 = e4µj νj xj0 eiαj0 , j = 1, 2. (76)
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and we get

A2 =
∑

n1=1,2
m1=0

�1(n1, 0)�2(0, n1) +
∑

n1=1,n2=2
m1=0,m2=1,2

�1(n1, n2; 0,m2)�2(0,m2; n1, n2)

= +�1(1; 0)�2(0; 1) + �1(2; 0)�2(0; 2)

+ �1(1, 2; 0, 1)�2(0, 1; 1, 2) + �1(1, 2; 0, 2)�2(0, 2; 1, 2)

= f 2
1 + f 2

2 − |f1|4f 2
2

(
λ2

1 − λ2
2

)2
λ2

1(
λ2

1 − λ2
1

)2(
λ2

1 − λ2
2

)2
− |f2|4f 2

1

(
λ2

1 − λ2
2

)2
λ2

2(
λ2

2 − λ2
1

)2(
λ2

2 − λ2
2

)2

= λ1(1 − e−i4β1)
λ2

1 − λ2
2

λ2
1 − λ2

2

ei4(β1+β2) e−θ1 eiϕ1 + λ2(1 − e−i4β2)
λ2

1 − λ2
2

λ2
1 − λ2

2

ei4(β1+β2) e−θ2 eiϕ2

+

[
λ1(1 − e−i4β1) e−i2β2

λ2
1 − λ2

2

λ2
1 − λ2

2

e−θ2−iϕ2 + λ2(1 − e−i4β2) e−i2β1
λ2

1 − λ2
2

λ2
1 − λ2

2

e−θ1−iϕ1

]

• e−(θ1+θ2) ei(ϕ1+ϕ2) ei4(β1+β2)

= i2

∣∣∣∣∣λ
2
1 − λ2

2

λ2
1 − λ2

2

∣∣∣∣∣ • [ρ1 sin 2β1 ei(φ−α) ei(3β1+4β2) e−θ1+iϕ1 + ρ2 sin 2β2 e−i(φ+α) ei(4β1+3β2) e−θ2+iϕ2

+ ρ1 sin 2β1 e−i(φ−α) ei(3β1+2β2) e−2θ2−θ1 · eiϕ1 + ρ2 sin 2β2 ei(φ+α) ei(2β1+3β2) e−2θ1−θ2 · eiϕ2 ]

(77)

where

φ = arg
(
λ2

1 − λ2
2

) = arctan

(
ρ2

1 sin 2β1 + ρ2
2 sin 2β2

ρ2
1 cos 2β1 − ρ2

2 cos 2β2

)
(78)

α = arg
(
λ2

1 − λ2
2

) = arctan

(
ρ2

1 sin 2β1 − ρ2
2 sin 2β2

ρ2
1 cos 2β1 − ρ2

2 cos 2β2

)

and

D̄2 = 1 +
2∑

r=1

∑
1�n1<n2�2

∑
1�m1<m2�2

Q1(n1, . . . , nr ;m1, . . . , mr)Q2(m1, . . . , mr; n1, . . . , nr)

= 1 + Q1(n1 = 1;m1 = 1)Q2(m1 = 1, n1 = 1) + Q1(n1 = 1;m1 = 2)Q2(m1 = 2, n1 = 1)

+ Q1(n1 = 2;m1 = 1)Q2(m1 = 1, n1 = 2) + Q1(n1 = 2;m1 = 2)Q2(m1 = 2, n1 = 2)

+ Q1(n1 = 1, n2 = 2;m1 = 1,m2 = 2)Q2(m1 = 1,m2 = 2; n1 = 1, n2 = 2)

= 1 − |f1|4 λ2
1(

λ2
1 − λ2

1

)2
− |f2|4 λ2

2(
λ2

2 − λ2
2

)2
− f 2

1 f 2
2

λ2
1(

λ2
1 − λ2

2

)2
− f 2

2 f 2
2

λ2
2(

λ2
1 − λ2

2

)2

+ |f1f2|4 · λ2
1λ

2
2

(
λ2

1 − λ2
2

)2(
λ2

1 − λ2
2

)2

(
λ2

1 − λ2
1

)2(
λ2

1 − λ2
2

)2(
λ2

2 − λ2
1

)2(
λ2

2 − λ2
2

)2
(79)

= 1 +

∣∣∣∣∣λ
2
1 − λ2

2

λ2
1 − λ2

2

∣∣∣∣∣
2

(e−i2β1 e−2θ1 + e−i2β2 e−2θ2)

+

⎛
⎝1 −

∣∣∣∣∣λ
2
1 − λ2

2

λ2
1 − λ2

2

∣∣∣∣∣
2
⎞
⎠ e−(θ1+θ2)e−i(β1+β2)

[
ρ1

ρ2
ei(ϕ2−ϕ1) +

ρ2

ρ1
ei(ϕ1−ϕ2)

]
+ e−i2(β1+β2) e−2(θ1+θ2)

(80)



An N-soliton solution to the DNLS equation based 13619

where ∣∣∣∣∣λ
2
1 − λ2

2

λ2
1 − λ2

2

∣∣∣∣∣
2

= (ρ1/ρ2 − ρ2/ρ1)
2 + 4 sin2(β1 + β2)

(ρ1/ρ2 − ρ2/ρ1)2 + 4 sin2(β1 − β2)
. (80a)

Substituting (77) and (80) into formula (49), we thus get the two-soliton solution to the DNLS
equation with VBC

ū2 = −i2
A2D2

D2
2

. (81)

Once again we find that, up to a permitted global constant phase factor, the above two-soliton
solution is equivalent to that obtained in [27], verifying the validity of our formula of N -soliton
solution and the reliability of those linear algebra techniques. As a matter of fact, a general
and strict demonstration of our revised IST for DNLS equation with VBC has been given in
one paper [28] by use of the Liouville theorem.

6. The asymptotic behaviors of the N -soliton solution

The complex conjugate of expression (49) gives the explicit expression of the N -soliton
solution as

uN = i2
ĀND̄N

D2
N

. (82)

Without loss of generality, for λn = µn +ivn, Vn = −4
(
µ2

n −v2
n

)
, n = 1, 2, . . . , N , we assume

V1 < V2 < · · · < Vn < · · · VN , and define the nth vicinity area as

�n : x − xn0 − Vnt ∼ 0, (n = 1, 2, . . . , N)

As t → −∞, N vicinity areas �n, n = 1, 2 . . . , N , queue up in a descending series

�N,�N−1, · · · ,�1, (83)

and in the vicinity of �n, we have (note that κj > 0)

θj = 4κj (x − xj0 − Vj t) →
{

+∞, for j > n

−∞, for j < n.
(84)

Here the complex constant 2cn in expression (62) has been absorbed into e−θn eiϕn by
redefinition of the soliton center xn0 and the initial phase αn0.

Introducing a typical factor Fn = − e−2θn(
λ2

n−λ2
n

)2 > 0, n = 1, 2, . . . , N ; then

Dn(1, 2, . . . , n) =
n∏

j=1

λ2
jFj

∏
l<m

∣∣∣∣∣λ
2
l − λ2

m

λ2
l − λ

2
m

∣∣∣∣∣
4

where l, m ∈ {1, 2, . . . , n} (85)

D 	 Dn−1(1, 2, . . . , n − 1) + Dn(1, 2, . . . , n)

=

⎛
⎜⎝1 + λ2

nFn

n−1∏
j=1

∣∣∣∣∣∣
λ2

j − λ2
n

λ2
j − λ

2
n

∣∣∣∣∣∣
4
⎞
⎟⎠ Dn−1(1, 2, . . . , n − 1) (86)

and

A 	 An(1, 2, . . . , n; 0, 1, 2, . . . , n − 1)

= Dn−1 e−θn e−iϕn

n−1∏
j=1

(
λ2

j − λ2
n

)2

(
λ2

j − λ2
n

)2 ei4βj . (87)
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In the vicinity of �n,

u = i2
AD

D2
	 u1

(
θn + �θ(−)

n , ϕn + �ϕ(−)
n

)
. (88)

Here

�θ(−)
n = 2

n−1∑
j=1

ln

∣∣∣∣∣λ
2
j − λ2

n

λ2
j − λ2

n

∣∣∣∣∣
2

(89)

�ϕ(−)
n = −

n−1∑
j=1

{
arg

[
(λ2

j − λ2
n)

2(
λ2

j − λ2
n

)2

]
+ 4βj

}

= 2
n−1∑
j=1

[
arg

(
λ2

j − λ2
n

) − arg
(
λ2

j − λ2
n

) − 2βj

]
(90)

then

uN 	
N∑

n=1

u1
(
θn + �θ(−)

n , ϕn + �ϕ(−)
n

)
. (91)

Each u1(θn, ϕn), (1, 2, . . . , n) is a one-soliton solution characterized by one parameter λn,
moving to the positive direction along the x-axis, queuing up in a series with descending order
number n as in series (83).

As t → ∞, in the vicinity of �n we have (note that κj > 0)

θj = 4κj (x − xj0 − Vj t) →
{−∞, for j > n

+∞, for j < n
(92)

D 	 DN−n(n + 1, n + 2, . . . , N) + DN−n+1(n, n + 1, . . . , N)

=

⎛
⎜⎝1 + λ2

nFn

N∏
j=n+1

∣∣∣∣∣∣
λ2

j − λ2
n

λ2
j − λ

2
n

∣∣∣∣∣∣
4
⎞
⎟⎠ DN−n(n + 1, n + 2, . . . , N) (93)

A 	 AN−n+1(n, n + 1, . . . , N; 0, n + 1, n + 2, . . . , N)

= DN−n(n + 1, n + 2, . . . , N)e−θn e−iϕn

N∏
j=n+1

(
λ2

j − λ2
n

)2

(
λ2

j − λ2
n

)2

λ2
j

λ
2
j

. (94)

So as t → ∞, in the vicinity of �n,

u = i2
AD

D2
	 u1

(
θn + �θ(+)

n , ϕn + �ϕ(+)
n

)
(95)

�θ(+)
n = 2

N∑
j=n+1

ln

∣∣∣∣∣λ
2
j − λ2

n

λ2
j − λ2

n

∣∣∣∣∣
2

(96)

�ϕ(+)
n = −

N∑
j=n+1

{
arg

[(
λ2

j − λ2
n

)2

(
λ2

j − λ2
n

)2

]
+ 4βj

}

= 2
N∑

j=n+1

[
arg

(
λ2

j − λ2
n

) − arg
(
λ2

j − λ2
n

) − 2βj

]
. (97)
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Then as t → ∞,

uN 	
N∑

n=1

u1
(
θn + �θ(+)

n , ϕn + �ϕ(+)
n

)
. (98)

That is to say, the N -soliton solution can be viewed as N well-separated exact one-solitons,
queuing up in a series with ascending order number n:

�1,�2, . . . , �N. (99)

In the course going from t → −∞ to t → ∞, the nth one-soliton overtakes the solitons from
the first to n − 1th, and is overtaken by the solitons from n + 1th to Nth. In the meantime, due
to collisions, the nth soliton had a total forward shift �θ(−)

n /κn from exceeding those slower
soliton from the first to n − 1th, and got a total backward shift�θ(+)

n /κn from being exceeded
by those faster solitons from n + 1th to N th, and just equaled the summation of shifts due to
each collision between two solitons, together with a total phase shift�ϕn, that is,

�xn = ∣∣�θ(+)
n − �θ(−)

n

∣∣ /κn (100)

�ϕn = �ϕ(+)
n − �ϕ(−)

n . (101)

7. The N -soliton solution to the MNLS equation

A nonlinear Schrödinger equation including the nonlinear dispersion term expressed as

i∂tυ + ∂xxυ + iα∂x(|υ|2υ) + 2β|υ|2υ = 0 (102)

is also integrable [29], and called the modified nonlinear Schrödinger (MNLS) equation. It
is well known that the MNLS equation well describes transmission of femtosecond pulses in
optical fibers [9–13] and is related to the DNLS equation by a gauge-like transformation [29]
formulated as

υ(x, t) = u(X, T ) ei2ρX+i4ρ2T (103)

with

x = α−1(X + 4ρT ), t = α−2T , ρ = βα−2. (104)

Using a method that is analogous to [29], and applying above gauge-like transformation to
equations (102), the MNLS equation with VBC can be transformed into the DNLS equation
with VBC,

i∂T u + ∂XXu + i∂X(|u|2u) = 0 (105)

with u = u(X, T ).
So according to (103), the N -soliton solution to the MNLS equation can also be attained

by a gauge-like transformation from that of the DNLS equation.

8. Concluding remarks

Based upon improved inverse scattering transform recently proposed in our group and the
Zakharov–Shabat equation for the DNLS equation with VBC considered anew, the N -soliton
solution to the DNLS equation with VBC has been derived by means of standard IST and
some special linear algebra techniques. The one- and two-soliton solutions have been cited
as two typical examples in illustration of the general formula of the N -soliton solution. It is
found to be perfectly in agreement with that obtained in other papers of ours [26, 30] based on
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a pure Marchenko formalism without the need of IST. The demonstration of the revised IST
considered anew for the DNLS equation with VBC has also been given by use of the Liouville
theorem [28].

Meanwhile, the asymptotic behaviors of the N -soliton solution have been discussed in
detail. In the limit of t → ±∞, the N -soliton solution can be viewed as the summation of N

single solitons with a definite displacement and phase shift of each soliton in the whole course
of elastic collisions.

An interesting conclusion is drawn that, besides a permitted well-known constant global
phase factor, there is also an undetermined constant complex parameter bn0 before each of
the typical soliton factor e−θn eiϕn (n = 1, 2, . . . , N). It can be absorbed into e−θn eiϕn by
a redefinition of soliton center and its initial phase factor. This kind of arbitrariness is in
correspondence with the unfixed initial conditions of the DNLS equation. Finally, we indicate
that the exact N -soliton solution to the DNLS equation can be converted to that of the MNLS
equation by gauge-like transformation.

The newly revised IST technique for the DNLS equation with VBC provides substantial
foundation for its direct perturbation theory, because the Jost functions given by the new IST
are of regular properties and normal asymptotic behaviors.
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Appendix

Some useful formulae of linear algebra are as follows.
If A1 and A2 are N × 1 matrices, A is a regular N × N matrix, then

AT
1 A−1A2 = det

(
A + A2A

T
1

)
det(A)

− 1. (A.1)

For a squared matrix B

det(I + B) = 1 +
N∑

r=1

∑
1�n1<n2<···<nr�N

B(n1, n2, . . . , nr) (A.2)

where B(n1, n2, . . . , nr) is the rth-order principal minor of B.
For an N × N matrix Q1 and an N × N matrix Q2,

det(I + Q1Q2) = 1 +
N∑

r=1

∑
1�n1<n2<···<nr�N

�r(n1, n2, . . . , nr)

= 1 +
N∑

r=1

∑
1�n1<···<nr�N

∑
1�m1<···<mr�N

Q1(n1, n2, . . . , nr ;m1,m2, . . . , mr)

× Q2(m1,m2, . . . , mr; n1, n2, . . . , nr), (A.3)

where Q1(n1, n2, . . . , nr ;m1,m2, . . . , mr) denotes a minor, which is the determinant of a
submatrix of Q1 consisting of elements belonging to not only rows (n1, n2, . . . , nr) but also
columns (m1, m2, . . . , mr).

The above formula also holds for the case of det(I + �1�2) with �1 to be an N × (N + 1)

matrix and �2 an (N + 1) × N matrix.



An N-soliton solution to the DNLS equation based 13623

For a squared matrix C with elements Cjk− = fjgk(xj − yk)
−1,

det(C) =
∏
j

fjgj

∏
j<j ′,k<k′

(xj − xj ′)(yk′ − yk)
∏
j,k

(xj − yk)
−1. (A.4)
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